Math 241 Winter 2024
 Lecture 8

$$
\begin{aligned}
& \text { More identities: } \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \tan (A+B)=? \\
& \text { ex: } 0^{\circ}<A<90^{\circ}, \quad \sin A=\frac{3}{5} \\
& 0^{\circ}<B<90^{\circ}, \quad \cos B=\frac{12}{13} \\
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& =\frac{3}{5} \cdot \frac{12}{13}+\frac{4}{5} \cdot \frac{5}{13}=\frac{36}{65}+\frac{20}{65}=\frac{12}{65} \\
& \operatorname{Cos}(A+B)=\operatorname{Cos} A \operatorname{Cos} B-\operatorname{Sin} A \operatorname{Sin} B \\
& =\frac{4}{5} \cdot \frac{12}{13}-\frac{3}{5} \cdot \frac{5}{13}=\frac{48}{65}-\frac{15}{65}=\frac{33}{65} \\
& \tan (A+B)=\frac{\sin (A+B)}{\operatorname{Cos}(A+B)}=\frac{56 / 65}{33 / 65}=\frac{56}{33}
\end{aligned}
$$

Derive a formula for $\tan (A+B)$

$$
\begin{aligned}
& \tan (A+B)=\frac{\sin (A+B)}{\operatorname{Cos}(A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B} \\
& \text { Divide everything } \\
& \text { by } \cos A \cos B \text {, and } \\
& \quad \begin{array}{l}
\frac{\sin A \cos B}{\cos A \cos B}+\frac{\cos A \sin B}{\cos A \cos B} \\
\cos A \cos B \\
\cos A \cos B
\end{array} \frac{\sin A \sin B}{\cos A \cos B} \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{aligned}
$$

find exact value for $\sin 105^{\circ}, \cos 105^{\circ}$, and $\tan 105^{\circ}$.

Hint: $105^{\circ}=60^{\circ}+45^{\circ}$
$\sin 105^{\circ}=\sin \left(60^{\circ}+45^{\circ}\right)=\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}$

$$
A+B=\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}+\frac{1}{2} \cdot \frac{\sqrt{2}}{2}
$$

$$
=\frac{\sqrt{6}+\sqrt{2}}{4}
$$

$\operatorname{Cos} 105^{\circ}=\operatorname{Cos}\left(60^{\circ}+45^{\circ}\right)=\operatorname{Cos} 60^{\circ} \operatorname{Cos} 45^{\circ}-\operatorname{Sin} 60^{\circ} \operatorname{Sin} 45^{\circ}$ $A+B$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}-\sqrt{6}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Find exact Value for } \sin 75^{\circ}, \cos 75^{\circ} \text {, and } \tan 75^{\circ} \\
& 75^{\circ}=30^{\circ}+45^{\circ} \\
& \sin 75^{\circ}=\sin \left(30^{\circ}+45^{\circ}\right)=\sin 30^{\circ} \cos 45^{\circ}+\cos 30^{\circ} \sin 45^{\circ} \\
& A+B \sin A \cos B+\cos A \sin B \\
& \frac{1}{2} \cdot \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}=\frac{\sqrt{2}+\sqrt{6}}{4} \\
& \cos 75^{\circ}=\cos \left(30^{\circ}+45^{\circ}\right)=\cos 30^{\circ} \cos 45^{\circ}-\sin 30^{\circ} \sin 45^{\circ} \\
& =\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}-\frac{1}{2} \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{6}-\sqrt{2}}{4} \\
& \tan 75^{\circ}=\tan \left(45^{\circ}+30^{\circ}\right)=\frac{\tan 45^{\circ}+\tan 30^{\circ}}{1-\tan 45^{\circ} \cdot \tan 30^{\circ}} \\
& \frac{1+\frac{\sqrt{3}}{3}}{1-1 \cdot \frac{\sqrt{3}}{3}}=\frac{3+\sqrt{3}}{3-\sqrt{3}} \\
& \frac{3+\sqrt{3}}{3-\sqrt{3}} \cdot \frac{3+\sqrt{3}}{3+\sqrt{3}}=\frac{9+3 \sqrt{3}+3 \sqrt{3}+3}{(3)^{2}-(\sqrt{3})^{2}}=\frac{12+6 \sqrt{3}}{9-3} \\
& \begin{array}{r}
\left.=\frac{6(2+\sqrt{3}}{6}\right)=\frac{2+\sqrt{3} \quad \begin{array}{l}
\text { Use Your call. } \\
\tan 75^{\circ} \approx 3.732
\end{array}}{\longrightarrow \approx 3.732} 4 .
\end{array}
\end{aligned}
$$

$\tan 105^{\circ}$

$$
\begin{aligned}
& \text { Method I: } \quad \tan 105^{\circ}=\frac{\operatorname{Sin} 105^{\circ}}{\operatorname{Cos} 105^{\circ}} \\
& =\frac{\frac{\sqrt{6}+\sqrt{2}}{4}}{\frac{\sqrt{2}-\sqrt{6}}{4}}=\frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}-\sqrt{6}} \\
& =\frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}-\sqrt{6}} \cdot \frac{\sqrt{2}+\sqrt{6}}{\sqrt{2}+\sqrt{6}}=\frac{2+\frac{2 \sqrt{12}+6}{(\sqrt{2})^{2}-(\sqrt{6})^{2}}}{} \\
& =\frac{8+2 \sqrt{4} \sqrt{3}}{2-6}=\frac{8+4 \sqrt{3}}{-4}=\frac{4(2+\sqrt{3})}{-4}=\sqrt{-(2+\sqrt{3})}
\end{aligned}
$$

Method II $\tan 105^{\circ}=$

$$
\begin{aligned}
& \tan \left(45^{\circ}+60^{\circ}\right)=\frac{\tan 45^{\circ}+\tan 60^{\circ}}{1-\tan 45^{\circ} \tan 60^{\circ}} \\
& A+B=\frac{1+\sqrt{3}}{1-\sqrt{3}} \\
&=\frac{1+\sqrt{3}}{1-\sqrt{3}} \cdot \frac{1+\sqrt{3}}{1+\sqrt{3}}=\frac{1+2 \sqrt{3}+3}{(1)^{2}-(\sqrt{3})^{2}} \\
&=\frac{4+2 \sqrt{3}}{1-3}=\frac{2(2+\sqrt{3})}{-22} \\
&=[-(2+\sqrt{3})]
\end{aligned}
$$

$$
\begin{aligned}
& \sin (A-B)=\sin (A+(-B)) \\
&=\sin A \cos (-B)+\cos A \sin (-B) \\
&=\sin A \cos B+\cos A \cdot-\sin B \\
&=\sin A \cos B-\cos A \sin B \\
& \cos (A-B)=\cos (A+(-B)) \\
&=\cos A \cos (-B)-\sin A \sin (-B) \\
&=\cos A \cos B-\sin A \cdot-\sin B \\
&=\cos A \cos B+\sin A \sin B \\
& \tan (A-B)=\tan (A+(-B)) \\
&=\frac{\tan A+\tan (-B)}{1-\tan A \tan (-B)}=\frac{\tan A-\tan B}{1+\tan A \tan B} \\
&\left.\operatorname{Recall} \quad \begin{array}{l}
\sin (-\alpha)
\end{array}\right)=-\sin \alpha \\
& \cos (-\alpha)=\cos \alpha \\
& \tan (-\alpha)=-\tan \alpha
\end{aligned}
$$

$$
\begin{aligned}
0 & <A<\frac{\pi}{2} & \tan A=\frac{4}{3} \\
& Q I & \\
\pi & <B<\frac{3 \pi}{2} & \tan B=\frac{12}{5}
\end{aligned}
$$

$$
\operatorname{Sin}(-B)=-\operatorname{Sin} B \quad \operatorname{Cos}(-B)=\cos B
$$

$$
\tan (-B)
$$

$$
\begin{aligned}
& =-\frac{-12}{13} \\
& =\frac{12}{13}
\end{aligned}
$$

$$
=\frac{-5}{13}
$$

$$
\begin{aligned}
& =-\tan B \\
& =-\frac{12}{5}
\end{aligned}
$$

$$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\frac{4}{3}-\frac{12}{5}}{1+\frac{4}{3} \cdot \frac{12}{5}}
$$

$$
L C D=15=\frac{20-36}{15-48}=\frac{-16}{-33}
$$

$=\frac{16}{33}$

Find exact value of $\cos 15^{\circ}$

$$
\text { Hint: } \begin{aligned}
15^{\circ} & =45^{\circ}-30^{\circ} \\
\cos 75^{\circ} & =\cos \left(45^{\circ}-30^{\circ}\right) \\
& A-B \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2}=\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

$\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\operatorname{Sin} 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 33^{\circ}$ $=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2}$

$$
\frac{\sqrt{6}-\sqrt{2}}{4}
$$

verify

$$
\begin{aligned}
& (\sqrt{6}+\sqrt{2})^{2}+(\sqrt{6}-\sqrt{2})^{2} \\
& (A+B)^{2}+\(A-B)^{2} \\
& =A^{2}+3 A B+B^{2}+A^{2}-2 A B+B^{2} \\
& =2 A^{2}+2 B^{2}=2(\sqrt{6})^{2}+2(\sqrt{2})^{2}=2 \cdot 6+2.2=
\end{aligned}
$$

$$
\begin{array}{ll}
0<A<\frac{\pi}{2} & \sin A=\frac{5}{13} \\
Q I \\
\frac{\pi}{2}<B<\pi & \operatorname{Cos} B=\frac{-7}{25} \\
Q I I &
\end{array}
$$

$$
\begin{aligned}
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
& =\frac{12}{13} \cdot \frac{-7}{25}+\frac{5}{13} \cdot \frac{24}{25} \\
& =\frac{-84+120}{325}=\frac{36}{325} \text { QI QI }{ }^{\text {or }}
\end{aligned}
$$

What quadrant is

$$
\begin{aligned}
& A-B ? \\
& 0^{\circ}<A<90^{\circ} \\
& 90^{\circ}<B<180^{\circ}
\end{aligned} \rightarrow-90^{\circ}<A-B<-90^{\circ} ? ?
$$

find

$$
\begin{aligned}
\sin (A-B) & =\sin A \cos B-\cos A \sin B \\
& =\frac{5}{13} \cdot \frac{-7}{25}-\frac{12}{13} \cdot \frac{24}{25} \\
& =\frac{-35-288}{325}=\frac{-323}{325}
\end{aligned}
$$

$\cos (A-B)>0$
Quill or
$\sin (A-B)<0 \rightarrow A-B$ is in QIV RIV
find

$$
\begin{aligned}
& \tan (A-B)= \frac{\tan A-\tan B}{1+\tan A \tan B} \\
&= \frac{\frac{5}{12}-\frac{-24}{7}}{1+\frac{5}{12} \cdot \frac{-27}{7}}=\frac{35+288}{84-135} \\
& L C D=12 \cdot 7=84=\frac{323}{\overline{5}^{51}} \\
& \operatorname{In} Q I V \rightarrow \tan (A-B)<0
\end{aligned}
$$

$$
\begin{aligned}
& \text { verify } \\
& \sin \left(x+\frac{\pi}{4}\right)+\sin \left(\sqrt{x}-\frac{\pi}{4}\right)=\sqrt{2} \cos x \text { wrong } \\
& A+B \\
& \text { LH }=\sin x \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4}+\sin x \cos \frac{\pi}{4}-\cos x \sin \frac{\pi}{4} \\
& =\sin x \cdot \frac{\sqrt{2}}{2}+\sin x \cdot \frac{\sqrt{2}}{2}=2 \cdot \sin x \cdot \frac{\sqrt{2}}{2} \\
& =\sin x \cdot \sqrt{2} \\
& =\sqrt{2} \sin x \\
& \text { Actual Problem }
\end{aligned}
$$

$$
\sin \left(x+\frac{\pi}{4}\right)+\sin \left(\frac{\pi}{4}-x\right)=\sqrt{2} \cos x
$$

verify

$$
\begin{aligned}
& \sec (A-B)=\frac{\cos (A+B)}{\cos ^{2} A-\sin ^{2} B} \\
& \angle H S=\frac{1}{\cos (A-B)}=\frac{1}{\cos A \cos B+\sin A \sin B} \cdot \frac{\cos (A B)}{(\cos A B} \\
& 1 \cdot \cos (A+B) \\
& {[\cos A \cos B+\sin A \sin B][\cos A \cos B-\sin A \sin B]} \\
& =\frac{\operatorname{Cos}(A+B)}{(\cos A \cos B)^{2}-(\sin A \operatorname{Sin} B)^{2}} \\
& =\frac{\cos (A+B)}{\cos ^{2} A \cos ^{2} B-\sin ^{2} A \sin ^{2} B}=\frac{\cos (A+B)}{\cos ^{2} A-\operatorname{Sin}^{2} B} \\
& \cos ^{2} A\left(1-\sin ^{2} B\right)-\left(1-\cos ^{2} A\right) \sin ^{2} B \\
& \cos ^{2} A-\cos ^{2} A \sin ^{2} B-\sin ^{2} B+\cos ^{2} A \sin ^{2} B
\end{aligned}
$$

Verify

$$
\frac{\sin (A-B)}{\cos A \cos B}=\tan A-\tan B
$$

$$
\text { LHS }=\frac{\sin A \cos B-\cos A \sin B}{\cos A \cos B}
$$

$$
=\frac{\sin A \cos B}{\cos A \cos B}-\frac{\cos A \sin B}{\cos A \cos B}=\tan A-\tan B
$$

$\operatorname{Sec} A=\sqrt{5}, \quad A$ is in $Q I$.
 $\sec B=\sqrt{10}, B$ is in QI. $\longrightarrow \cos A=\frac{1}{\sqrt{5}}$ Find $\operatorname{Sec}(A-B)$

$$
\begin{aligned}
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
& =\frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}}+\frac{2}{\sqrt{5}} \cdot \frac{3}{\sqrt{10}}=\frac{7}{\sqrt{50}} \\
\sec (A-B) & =\frac{\sqrt{50}}{7}=\frac{\sqrt{25} \sqrt{2}}{7}=\frac{5 \sqrt{2}}{7}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \cos \left(x+90^{\circ}\right)+\cos \left(x-90^{\circ}\right) \\
& =\cos x \cos 90^{\circ}-\sin x \sin 90^{\circ}+\cos x \cos 90^{\circ}+\sin x \sin 90^{\circ} \\
& =2 \cos x \cdot \cos 90^{\circ}=0
\end{aligned}
$$

More on graphs

$$
y=\sin x
$$

one period is 2π
Domain $0 \leq x \leq 2 \pi \rightarrow[0,2 \pi]$
Range $-1 \leq y \leq 1 \rightarrow[-1,1]$
Graph $y=2 \sin (x-\pi)+1$ move up

1) $y=\sin (x-\pi)$

$$
0 \leqslant x-\pi \leq 2 \pi
$$

$$
\pi \leq x \leq 3 \pi
$$

2) $y=2 \operatorname{Sin}(x-\pi)$

Graph

$$
\begin{aligned}
& y=-\sin (\underbrace{2 x+\frac{\pi}{2}}) \\
& 0 \leq 2 x+\frac{\pi}{2} \leq 2 \pi \\
& 0 \leq 4 x+\pi \leq 4 \pi \\
& -\pi \leq 4 x \leq 3 \pi \\
& \frac{-\pi}{4} \leq x \leq \frac{3 \pi}{4}
\end{aligned}
$$

Geraph

$$
y=3 \sin \left(\frac{1}{2} x-\frac{\pi}{4}\right)+5
$$

$$
\begin{aligned}
& 0 \leq \frac{1}{2} x-\frac{\pi}{4} \leq 2 \pi \\
& 0 \leq 2 x-\pi \leq 8 \pi
\end{aligned}
$$

a) $y=\sin \left(\frac{1}{2} x-\frac{\pi}{4}\right)$

$$
\pi \leq 2 x \leq 9 \pi
$$

$y=\operatorname{Cos} x$
Domain $[0,2 \pi]$
Range $[-1,1]$

Graph $y=\operatorname{Cos}(2 x)$

$$
\begin{gathered}
0 \leq 2 x \leq 2 \pi \\
0 \leq x \leq \pi
\end{gathered}
$$

Graph $y=\pi \cos (x-2)-\pi$

$$
\begin{array}{lll}
0 \leq x-2 \leq 2 \pi \\
2 \leq x \leq 2 \pi+2
\end{array} \quad \text { - }
$$

Graph $y=\operatorname{Cos}(-x)=\operatorname{Cos} x$

